Answer all the questions and show all your work.

1. Compute E, F, G, L, M, N, K for the surface parameterized by $\mathbf{X}(u, v) = (\ln u, u \cos v, u \sin v)$

2. A parametrized surface has first fundamental form

$$du^2 + Gdv^2.$$

a) Prove that the v-parameter curves of this surface are geodesics.

b) If $G = \sin^2 u$, evaluate the Gaussian curvature of this surface.

3. Prove one of the following two propositions:

 a. On a sphere of radius R the area of a geodesic triangle with angles α, β, γ is $(\alpha + \beta + \gamma - \pi)R^2$.

 b. If $\triangle ABC$ is a geodesic triangle with respective interior angles α, β, γ on a surface S, then its total curvature is

 $$\int \int_{\triangle ABC} dS = \alpha + \beta + \gamma - \pi$$