Math Awareness Month Competition
2013 Examination for 9 -12th Grades

DIRECTIONS: [40 Minutes - 5 Questions] Start each new problem on a separate page.
Show your work! Answers must be exact. You are allowed to use a calculator.
You are not allowed to borrow or interchange calculators during the test.

1. What is the smallest integer $N > 1$ such that for any positive integer a, a^N and a have the same last digit?

2. Find all positive integers n such that $n^4 + n^2 + 1$ is a prime number.

3. Person A has 6 fair coins and Person B has 5 fair coins. Person A wins if he flips more heads than B does, otherwise B wins. What is the probability of A winning?

4. Let A be a unit square. What is the largest area of a triangle whose vertices lie on the perimeter of A? Justify your answer.

5. Let a, b, c be three distinct real numbers. Suppose that

$$\frac{a^2}{(b - c)^2} + \frac{b^2}{(c - a)^2} + \frac{c^2}{(a - b)^2} = 2.$$

Find $\frac{a}{b - c} + \frac{b}{c - a} + \frac{c}{a - b}$.

Answers:

1. What is the smallest integer \(N > 1 \) such that for any positive integer \(a \), \(a^N \) and \(a \) have the same last digit?
 [Answer: Letting \(a = 2 \) shows that \(N > 4 \). Thus \(N = 5 \) by brute force checking (more clever methods are fine).]

2. Find all positive integers \(n \) such that \(n^4 + n^2 + 1 \) is a prime number.
 [Answer: \(n^4 + n^2 + 1 = n^4 + 2n^2 + 1 - n^2 = (n^2 + n + 1)(n^2 - n + 1) \). So one of the factors has to be 1. It follows that \(n = 1 \).]

3. Person A has 6 fair coins and Person B has 5 fair coins. Person A wins only if he flips more heads than B does, otherwise B wins. What is the probability of A winning?
 [Answer: \(1/2 \). Imagine that A and B each toss 5 times. There is a certain probability \(p \) that A is ahead, and by symmetry the same probability \(p \) that B is ahead. The probability they are tied after 5 tosses is \(1 - 2p \). Thus the probability that A wins is
 \[p + \frac{1}{2}(1 - 2p) = \frac{1}{2}. \]

4. Let \(A \) be a unit square. What is the largest area of a triangle whose vertices lie on the perimeter of \(A \)? Justify your answer.
 [Answer: \(1/2 \). We claim that such largest area can be obtained with all vertices of the triangle also vertices of \(A \). Pick a vertex of the triangle that is not vertex of \(A \), call it \(V \). Fix the opposite triangle edge, and note that when we move \(V \) in one of the two directions along the edge of \(A \) it is on, the height would not decrease. So one can make \(V \) a vertex of \(A \). From here it is easy to check that the answer is \(1/2 \).]

5. Let \(a, b, c \) be three distinct real numbers. Suppose that
 \[\frac{a^2}{(b-c)^2} + \frac{b^2}{(c-a)^2} + \frac{c^2}{(a-b)^2} = 2. \]
 Find \(\frac{a}{b-c} + \frac{b}{c-a} + \frac{c}{a-b} \).
 [Answer: \(0 \). Let \(x = \frac{a}{b-c}, \ y = \frac{b}{c-a}, \ z = \frac{c}{a-b} \). We observe that \((x+1)(y+1)(z+1) = (x-1)(y-1)(z-1) \), so \(xy + yz + zx = -1 \). Thus \((x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx) = 0 \).]