Math Awareness Month Competition

2008 Examination for 10th-12th Grades

DIRECTIONS: [40 Minutes - 5 Questions] Start each new problem on a separate page. **Show your work!** Answers must be **exact.** You are allowed to use a calculator. You are not allowed to borrow or interchange calculators during the test.

1. There exist positive integers A, B, and C, with no common factor greater than 1, such that

$$A \log_{200} 5 + B \log_{200} 2 = C.$$

Find A, B, and C.

2. A *rising* number, such as 34689, is a positive integer each digit of which is larger than each of the digits to its left. There are \(\binom{9}{5} = 126 \) five-digit rising numbers. When these numbers are arranged from smallest to largest, find the 97th number in the list.

3. Six distinct integers are picked at random from \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}. What is the probability that among those selected, the second smallest is 3?

4. In \(\triangle ABC \), \(\angle ABC = 120^\circ \), \(AB = 3 \) and \(BC = 4 \). If perpendiculars constructed to \(AB \) at \(A \) and to \(BC \) at \(C \) meet at \(D \), find \(CD \).

5. A sequence of complex numbers \(z_0, z_1, z_2, \cdots \) is defined by the rule \(z_{n+1} = \frac{iz_n}{\bar{z}_n} \) where \(\bar{z}_n \) is the complex conjugate of \(z_n \) and \(i^2 = -1 \). Suppose \(|z_0| = 1 \) and \(z_{10} = 1 \). How many possible values are there for \(z_0 \)?