1. (20 pts) Let E be the splitting field of $X^3 - 5$ over the rational numbers \mathbb{Q}. Find (with proof) the Galois group of E over \mathbb{Q}.

2. (10 pts) Factor 2 into irreducibles in the Guassian integers, $R = \mathbb{Z}[i]$. Justify your factorization.

3. (15 pts) Let α be a complex number and suppose that

$$\alpha^n + c_1 \alpha^{n-1} + \ldots + c_{n-1} \alpha + c_n = 0$$

where $c_1, ..., c_n \in \mathbb{Z}$, the integers. Prove that the minimal polynomial of α over the rational numbers has integer coefficients.

4. (15 pts) Let $R \subseteq S$ be Noetherian rings. Suppose that S is finitely generated as an R-module, generated by n elements. Let m be a maximal ideal of R. Prove that there are at most n maximal ideals of S lying over R.

5.
 a) (10 pts) State and prove the going up theorem.
 b) (10 pts) State and prove the Hilbert basis theorem.

6. (20 pts) Let R be a Noetherian ring and suppose that $I \subseteq J$ are two ideals of R. Assume for all primes P associated to I that $J_P \subseteq I_P$. Prove that $I = J$.