#1. Let G be a complete graph with vertices $\{v_1, \ldots, v_n\}$. Define a weight function on $E(G)$ by
$$\text{wt}(v_i v_j) = \max\{i, j\}.$$
Prove that G has exactly $(n - 1)!$ distinct minimum-weight spanning trees.

#2. Let $k \geq 1$, and let G be a k-regular bipartite graph. Prove that G has a perfect matching.

#3. Let G be the following graph with vertices $\{v_1, \ldots, v_7\}$.

![Graph Diagram](image)

(3a) Construct a source-sink network N such that a maximum flow in N corresponds to a maximum matching in G.

(3b) Construct a source-sink network N' such that a maximum flow in N' corresponds to a maximum family of pairwise internally disjoint v_2, v_4-paths in G.

#4. Let G be a planar graph, and let G^* be its planar dual.

(4a) What invariant of G^* equals the girth of G? Explain your answer.

(4b) Prove that if G has a cut-vertex, then so does G^*.
#5. The octahedron is the graph O shown in the following figure.

(5a) Prove that O has chromatic number 3. Your answer should not make use of the chromatic polynomial.

(5b) Now calculate the chromatic polynomial of the octahedron. (Hint: O can be formed by deleting a perfect matching from K_6.) Use your answer to give another proof that O has chromatic number 3.

#6. Let G be a connected graph. Recall that the Tutte polynomial of G is defined by

$$T_G(x, y) = \sum_{A \subseteq E(G)} (x - 1)^{r(E) - r(A)} (y - 1)^{|A| - r(A)}$$

where $r(A)$ denotes the size of a maximum acyclic subset of A.

(6a) What does the number $T_G(2, 2)$ tell you about G?

(6b) Explain how to use the Tutte polynomial to calculate the number of acyclic subsets of $E(G)$.

(6c) (Extra credit) Explain how to use the Tutte polynomial to find the edge-connectivity $\kappa'(G)$.