Math 122 Midterm Exam, March 11, 2003

Name: Instructor:

Directions: This is a closed-book test with no calculators. You MUST show all your work to receive credit. Each problem is worth 20 points out of a total of 200.

1. Determine if the following series converge or diverge. You must justify your answer (e.g., “the series converges by comparison with . . . ”).
 a. \(\sum_{n=1}^{\infty} \frac{1}{n^2 + n} \)
 b. \(\sum_{n=1}^{\infty} \frac{\ln(n)}{n} \)
 c. \(\sum_{n=0}^{\infty} \frac{6^n}{n!} \)
 d. \(\sum_{n=0}^{\infty} (-1)^n \left(\frac{3}{2} \right)^{n-1} \)

2. Find the radius of convergence \(\rho \) of the power series \(\sum_{n=1}^{\infty} \frac{4^n}{\sqrt{n}} x^n \).
 Determine whether or not the series converges at \(\pm \rho \); again, do not forget to justify your answers.

3. Starting with the power series for \(e^x \), find a power series expression for \(\int x^3 e^x \, dx \).

4. Find the Taylor series for \(f(x) = e^x \) centered at \(a = 1 \). Find the interval of convergence of the series.

5. What is the Maclaurin series for \(f(x) = \sin(x) \)? Find an approximate value for \(f(2) \) by using the first three non-zero terms of this series.

6. Find the parametric equations for the line of intersection of the two planes \(2x - y + z = 4 \) and \(-x + y + z = 6 \).

7. Find the equation of the plane which contains the point \((2, -3, 3)\) and is perpendicular to the line
 \[\frac{x-1}{2} = \frac{y+1}{4} = \frac{z}{3} \]

8. Define the angle between two planes to be the angle between their respective normal vectors. If \(\theta \) is the angle between the two planes \(2x - y + z = 1 \) and \(x + y + z = 10 \), find an expression for \(\cos(\theta) \).

9. Find the area bounded by the polar curve \(r = 2 \sin(\theta) \) in the upper half plane \((0 \leq \theta \leq \pi) \).

10. a. Convert the equation \(r = \cos(\theta) - \sin(\theta) \) into one in Cartesian (rectangular) coordinates.
 b. Find the center and radius of the sphere \(x^2 - 2x = 6y - y^2 - z^2 + 26 \).