Atanas Gueorguier Stefanov

College of Liberal Arts and Sciences - Mathematics
Professor
Primary office:
785-864-3009
Snow Hall, room #514
University of Kansas
1460 Jayhawk Boulevard
Lawrence, KS 66045-7594


Summary
  • Partial Differential Equations
  • Mathematical Physics
  • Harmonic Analysis

Teaching Interests

  • Differential equations
  • Mathematical analysis

Research

Prof. Stefanov's research interests are in the broad area of analysis. After receiving his Ph.D. degree in classical harmonic analysis, he has mostly worked on the local and global behavior of the solutions to dispersive partial differential equations, like Schroedinger and wave equations. Recent interests include the existence and stability of solitons arising in the PDE's of mathematical physics.

Research Interests

  • Partial differential equations
  • Mathematical Physics
  • Harmonic Analysis

Selected Publications

 
  1. S. Hakkaev, M. Stanislavova,  A. Stefanov, Spectral stability for  classical periodic waves  of the Ostrovsky and short pulse models,   
      Stud. Appl. Math.,  139, (2017), p. 405--433. 
  2. A. Comech, T.V. Phan, A. Stefanov,  Asymptotic stability of solitary waves in generalized Gross - Neveu model,   Ann. Inst. Henri Poincare Anal. Non Lineaire,  34 (2017), no. 1, p. 157--196. 
  3. M. Stanislavova, A. Stefanov,  On the spectral problem $L u=\lambda u'$ and applications,  Comm. Math. Phys. 343 (2016), no. 2, p. 361--391. 
  4. M. Stanislavova, A. Stefanov,  Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case, Physica D262, (2013), p. 1--13. 
  5. A. Stefanov, P. G. Kevrekidis, Traveling waves for monomer chains with pre-compression,  Nonlinearity,  26, 
    (2013), p.  539--564.
  6. M. Stanislavova, A. Stefanov,  Linear stability analysis for traveling waves of second order in time PDE's, Nonlinearity,  25, (2012) p. 2625--2654.
  7. A. Stefanov, P. Kevrekidis,  On the existence of solitary traveling waves for generalized Hertzian chains,  Journal of Nonlinear Science22, no. 3 (2012), p. 327--349.
  8. V. Georgiev, A. Stefanov, M. Tarulli,  Smoothing - Strichartz estimates for the  Schroedinger equation with small magnetic
    potential, Disc. Contin. Dyn. Syst. - A  17, (2007),  p. 771--786.
  9. A. Stefanov,  Strichartz estimates for the magnetic Schr\"odinger equation,  Adv. Math. 210, (2007)  p. 246--303. 
  10. A. Stefanov, P. Kevrekidis,  Asymptotic behavior of small solutions for the discrete nonlinear Schroedinger and Klein-Gordon
    equations,  Nonlinearity  18 (2005), p. 1841–1857.

» Show All Publications

Selected Awards & Honors

KU Scholarly achievement award
University of Kansas
2015


Events Calendar

Using Math

Nicole Johnson found a way to express her baton twirling using math.  See video.