Atanas Gueorguier Stefanov

College of Liberal Arts and Sciences - Mathematics
Primary office:
Snow Hall, room #514
University of Kansas
1460 Jayhawk Boulevard
Lawrence, KS 66045-7594

  • Partial Differential Equations
  • Mathematical Physics
  • Harmonic Analysis

Teaching Interests

  • Differential equations
  • Mathematical analysis


Prof. Stefanov's research interests are in the broad area of analysis. After receiving his Ph.D. degree in classical harmonic analysis, he has mostly worked on the local and global behavior of the solutions to dispersive partial differential equations, like Schroedinger and wave equations. Recent interests include the existence and stability of solitons arising in the PDE's of mathematical physics.

Research Interests

  • Partial differential equations
  • Mathematical Physics
  • Harmonic Analysis

Selected Publications

  1. S. Hakkaev, M. Stanislavova,  A. Stefanov, Spectral stability for  classical periodic waves  of the Ostrovsky and short pulse models,   
      Stud. Appl. Math.,  139, (2017), p. 405--433. 
  2. A. Comech, T.V. Phan, A. Stefanov,  Asymptotic stability of solitary waves in generalized Gross - Neveu model,   Ann. Inst. Henri Poincare Anal. Non Lineaire,  34 (2017), no. 1, p. 157--196. 
  3. M. Stanislavova, A. Stefanov,  On the spectral problem $L u=\lambda u'$ and applications,  Comm. Math. Phys. 343 (2016), no. 2, p. 361--391. 
  4. M. Stanislavova, A. Stefanov,  Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case, Physica D262, (2013), p. 1--13. 
  5. A. Stefanov, P. G. Kevrekidis, Traveling waves for monomer chains with pre-compression,  Nonlinearity,  26, 
    (2013), p.  539--564.
  6. M. Stanislavova, A. Stefanov,  Linear stability analysis for traveling waves of second order in time PDE's, Nonlinearity,  25, (2012) p. 2625--2654.
  7. A. Stefanov, P. Kevrekidis,  On the existence of solitary traveling waves for generalized Hertzian chains,  Journal of Nonlinear Science22, no. 3 (2012), p. 327--349.
  8. V. Georgiev, A. Stefanov, M. Tarulli,  Smoothing - Strichartz estimates for the  Schroedinger equation with small magnetic
    potential, Disc. Contin. Dyn. Syst. - A  17, (2007),  p. 771--786.
  9. A. Stefanov,  Strichartz estimates for the magnetic Schr\"odinger equation,  Adv. Math. 210, (2007)  p. 246--303. 
  10. A. Stefanov, P. Kevrekidis,  Asymptotic behavior of small solutions for the discrete nonlinear Schroedinger and Klein-Gordon
    equations,  Nonlinearity  18 (2005), p. 1841–1857.

» Show All Publications

Selected Awards & Honors

KU Scholarly achievement award
University of Kansas

Events Calendar

Using Math

CTE course transformation grant helps Emily Witt, assistant professor of math, develop active learning with student groups in calculus.  Positive results using modules developed with Justin Lyle and Amanda Wilkens, math graduate students, were attained.  Read more

Math and COVID-19: Sources on how math is being used to track the virus and its spread.  AMS link.

A mathematician-musician's breakthrough melds East, West. Read more.

Researcher's innovative approach to flood mapping support emergency management and water officials. Read more.

Nicole Johnson found a way to express her baton twirling using math. See video.